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Metal-ketene complexes1 have been suggested as intermedi-
ates in reductions of CO and CO2 in industrially important
processes.2 Ketene complexes have been implicated as crucial
intermediates in thermal reactions (e.g., the Do¨tz reaction)3 and
in photoinduced transformations of Fischer carbene complexes,
although in the latter case such species have yet to be detected
spectroscopically or isolated.4 Side products in both thermal
and photochemical reactions of Fischer carbene complexes
suggest that intramolecular C-H bond activation of either
carbene or ketene intermediates is possible,5 but this has not
been demonstrated on an isolable ketene complex.1 Here we
report that structurally characterized Ir-ketene complexes16
undergo C-H bond activation both thermally and photochemi-
cally. Quantitative photochemical conversion of1 at -25 °C
to a cis-aryl(hydride)Ir(III) complex2 is cleanly reversed at
ambient temperature. A net 1,3-hydride shift (1 f five-
coordinate acyl5) is shown to be the result of a four-stephydride
walk, by way of2, 3, and4 (Scheme 1). The last intermediate
(4) is a five-coordinate enol complex which, like its acyl
tautomer5, adds CO stereoselectively.
Complex1a6 could be produced by direct complexation to

Ph2CdCdO7 (88% after chromatography over SiO2). Heating
a solution of1a in C6D6 (80-90 °C, 8-9 h) led to5a in 88-
92% yield. The1H NMR spectrum of5a8 showed resonances
for nine aromatic protons, a one-proton singlet atδ 4.52, and
absorptions for two P(i-Pr)3 ligands. In the31P{1H} NMR
spectrum, an AB pattern with large coupling (313.3 Hz)
indicated inequivalent, mutually trans phosphines. In the13C
spectrum (C6D6), only two triplets were seen, atδ 195.92 (J )
3.2 Hz) and 139.03 (J ) 7.0 Hz), supporting the assignment of
an acyl carbon and an aryl carbon bound to the IrCl[P(i-Pr)3]2
unit. Save for the lack of observable coupling to the proton
resonating atδ 4.52 ppm, these data might be consistent with

formulation of the new product as6 {M ) IrCl[P(i-Pr)3]2},9a
but NOE information8,9band the facile addition of CO discussed
below confirm structure5a. In contrast to6, 5a is derived
(formally) from1aby ortho-metalation and a 1,3-hydride shift.
How has this hydride shift occurred? In the thermolysis

reaction just described, intermediates were not detected in NMR
spectra of the mixture. However, irradiating a solution of1a
in toluene-d8 with Pyrex-filtered UV light at-25 °C for only
10 min produced2a in quantitative yield based on integration
against an internal standard. In the1H NMR spectrum of2a,8
an upfield triplet (δ -11.21,JPH ) 10.5 Hz) and resonances in
the region 6.5-7.9 ppm for nine protons pointed to oxidative
addition of an ortho-CH bond to the metal. One singlet in the
31P{1H} NMR spectrum10 implicated the symmetry of anη2-
(C,O)-bound ketene complex, and13C NMR and IR data were
consistent with reduced back-bonding in2acompared with that
in 1a.11 Remarkably, on standing at ambient temperature for
10 min,2a reverted to1aquantitatively. Furthermore, geometric
isomers1b,c stereospecifically furnished the corresponding
thermally unstable products2b,c.8 Thus, the behavior of1 and
2 is a rare example of a photochromic organometallic reaction.12

Although 2a reverted to1a in a dark reaction, prolonged
irradiation of1aat higher temperatures (28-30 °C, 10 h) gave
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Scheme 1a

a (a) Pyrex-filtered UV light, toluene-d8, -25 °C,e10 min, 100%;
(b) room temperature,e10 min, 100%; (c) same as (a) but in C6D6 at
28-30 °C, 10 h, 78% of4a from 1a; (d) C6D6, room temperature, 1
day, 100%; (e) for4a, Ph2CdCdO, C6D6, room temperature, 1 h, 97%
(75% from1a); (f) for 5a, CO, 1 atm, room temperature, 2 min.
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rise to a mixture containing products5a (6%), the knowntrans-
(CO)IrCl[P(i-Pr)3]2 (11%),13,14 and 4a (78%, versus internal
standard). The new complex4a bears equivalent31P nuclei,
and its1H NMR spectrum showed resonances for nine aromatic
protons as in2aor 5a, but in addition, a sharp one-proton singlet
at 7.07 ppm, which disappeared on shaking with D2O.15a

Moreover,4aexhibited a weak, broad IR absorption near 3350
cm-1, as seen in spectra of organic enols,15b and this shifted to
2470 cm-1 on exchange with D2O. 13C NMR and HMBC data
for 4a indicated that the resonances for the HOCdC unit
appeared atδ 150.07 (t,J ) 6.5 Hz, C1) and 127.29 (t,J ≈ 1
Hz, C2). The spectral evidence in favor of an enol formulation
was corroborated by tautomerization of4a to 5aon standing in
solution in the dark (half-life ca. 15 h) or on attempted
chromatography over silica gel. Similarly,4a-O-d isomerized
to 5a-C2-d over 1 day. Control experiments were undertaken
to characterize the prototropy in4a and 5a. In the dark,5a
showed no evidence16 of deuteration at C2 after 2 days with
D2O at 30°C, or after 8 h at 80°C. Addition of DCl (0.25
equiv) to the mixture resulted in 60% deuteration of5a at C2
after 2 h at 80°C (with some decomposition). Irradiation of
5adid not lead to4a, and irradiation in the presence of D2O (5
h) did not give rise to detectable deuteration at C2.15c,16

Furthermore, the alcohol function in4a could be trapped
quantitatively with Ph2CdCdO1c to give chelate7, with a red-
shifted IR absorption for the ester carbonyl of 1630 cm-1.17

Further studies involving ligand additions to4aand5agave
a clearer picture of the bonding and reactivity of these ketene-
derived species. Bubbling CO into a solution of5a for 2 min
produced a mixture of diasteromeric, chromatographically
separable adducts8 and9 in a ratio of 4:1 (Scheme 1).18 Similar
treatment of enol4awith CO gave the adducts10 and11 (eq
1, ratio 3.5:1), each exhibiting a sharp singlet for the enolic
proton atδ 8.33 and 5.95, respectively.15a,19 Significantly, the

isomeric enols showed very different chemical behavior. First,
on saturating the solution of10 and 11 with D2O at room
temperature, the O-H signal of the minor adduct11disappeared
at least 100 times more rapidly than that of the major isomer
10: times for completion weree5 min for11and 0.5 days for

10. Second, whereas11 tautomerized to9 on silica gel,10
could be isolated unchanged in 58% overall yield from1a. The
far greater stability of1020 and the downfield shift of its
hydroxylic proton are both attributed to an intramolecular
hydrogen bond21abwhich based on these two criteria must be
stronger in10 than that in the five-coordinate4a.
We have been unable to detect3 (Scheme 1), but it is a

reasonable link between2 and 4: isomerization of2a could
lead to3a.22 From3a, enol4a could be produced by insertion
of the ketene CdO function into the Ir-H bond. In contrast,
insertion of the CdC bond into M-H bonds was reported in
two intermolecular reactions,23 where the geometric constraints
of the intramolecular reaction3 f 4 were absent. From the
evidence gathered to date, the ketene functionalization repre-
sented by isomerization of1a to 5a occurs by way of a four-
step hydride walk, instead of by direct 1,3-hydride shift.24

Despite the importance of acyl ligands, and studies in the
last decade on their deprotonation (ususally with strong bases),25

the chemistry of tautomeric enol complexes involvingσ-bound
metal substituents21 is virtually unexplored. The results here
demonstrate for the first time in high-yield1,9 reactions on
isolable species that ketene complexes can be a source of enol
and acyl26 ligands through thermal or photochemical C-H bond
activation and subsequent hydride walk.
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